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Abstract. Longleaf pine (Pinus palustris) woodlands and savannas are among the most
frequently burned ecosystems in the world with fire return intervals of 1–10 years. This fire
regime has maintained high levels of biodiversity in terms of both species richness and
endemism. Land use changes have reduced the area of this ecosystem by .95%, and
inadequate fire frequencies threaten many of the remnants today. In the absence of frequent
fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory
develops. This midstory encroachment has been the focus of much research and management
concern, largely based on the assumption that the midstory reduces understory plant diversity
through direction competition via light interception. The general application of this
mechanism of degradation is questionable, however, because midstory density, leaf area,
and hardwood species composition vary substantially along a soil moisture gradient from
mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine
communities suggests that the development of the forest floor, a less conspicuous change in
forest structure, might cause a decline in plant biodiversity when forests remain unburned. We
report here a test of the interactions among fire, litter accumulation, forest floor development,
and midstory canopy density on understory plant diversity. Structural equation modeling
showed that within xeric sites, forest floor development was the primary factor explaining
decreased biodiversity. The only effects of midstory development on biodiversity were those
mediated through forest floor development. Boundary line analysis of functional guilds of
understory plants showed sensitivity to even minor development of the forest floor in the
absence of fire. These results challenge the prevailing management paradigm and suggest that
within xeric longleaf pine communities, the primary focus of managed fire regime should be
directed toward the restoration of forest floor characteristics rather than the introduction of
high-intensity fires used to regulate midstory structure.

Key words: duff accumulation; fire; forest floor; litter; longleaf pine; Pinus palustris; restoration;
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INTRODUCTION

Fire and the genus Pinus are inextricably linked over

space and time (Agee 1998). Fire not only sustains Pinus

spp., but is also critical for maintaining the biodiversity

of ecosystems dominated by a Pinus overstory. Longleaf

pine (Pinus palustris Miller) woodlands and savannas of

the southeastern United States represent an extreme

example of a fire dependent ecosystem. These forests

have among the shortest fire return intervals of any

forest in the world, with fires typically recurring every 1–

10 years (Christensen 1981, 1988, Bridges and Orzell

1989, Abrahamson and Hartnett 1990, Chandler et al.

1991, Ware et al. 1993, Glitzenstein et al. 1995). The

understory of longleaf communities is extremely diverse

both in terms of species richness and endemism (Hardin

and White 1989). In the contemporary landscape,

longleaf pine ecosystems now occupy only 3–5% of

their historical area (Noss et al. 1995, Jose et al. 2006).

Large areas of longleaf were converted to different land

uses, but a lack of frequent fires has been one of the

most widespread factors driving the decline of remaining

intact stands (Landers et al. 1995).

Reducing fire return interval has many effects on

forest structure. When fires occur with insufficient

frequency in longleaf pine communities, a woody

midstory dominated by fire sensitive trees and shrubs

rapidly develops (Glitzenstein et al. 1995). The develop-

ment of this midstory often occurs concurrently with a

decline in understory diversity. This has led many to

conclude that light intercepted by midstory crowns is the

salient feature responsible for this decline (Platt et al.

1988a, b, Platt and Rathburn 1993, Brewer and Platt

1994, Brewer 1995, Gilliam and Platt 1999, Provencher

et al. 2001a). This mechanism assumes that the

developing midstory competitively excludes understory

plant species, primarily through light interception.

A less conspicuous change in forest structure associ-

ated with infrequently burned stands is the accumula-
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tion of leaf litter and the development of organic soil

horizons, collectively called the forest floor (Varner et al.

2005). Frequently burned longleaf pine savannas lack an

organic soil horizon as litter is consumed by fires before

it can decompose into humus. When fire is excluded, the

low fertility of most longleaf pine sites results in

extremely slow leaf litter decomposition rates that allow

for a high litter accumulation rate (Hendricks et al.

2002). Because litter can influence the physical, biotic,

and resource environment of forests, it may also directly

regulate understory forest communities (Sydes and

Grimes 1981, Facelli and Pickett 1991).

The relative effects of litter and shading on regulating

the diversity and density of understory plant species are

poorly understood in longleaf pine systems as well as in

many other forests. Reanalysis of data reported by

Provencher et al. (2001a–c) showed that the impact of

litter accumulation might outweigh that of midstory

shading. They found that species richness increased as

rapidly as one year following fire, even though the fire

killed ,20% of midstory stems. Although not discussed

as a mechanism of degradation, the fire did consume the

accumulated litter (Provencher et al. 2001c). In contrast,

felling/girdling and herbicide treatments, which resulted

in .90% reduction in midstory stems, had little effect on

the understory species richness until those treatments

were followed by fire three years later (Provencher et al.

2001c).

Our goal in this paper was to understand the

relationships among fire, midstory development, forest

floor accumulation, and the understory plant commu-

nity. Clarifying these relationships has potentially

profound impacts on forest management. Sustaining

biodiversity requires that managers understand how

their efforts will affect the structural and functional

features of ecosystems, especially if restoration of a

degraded system is the goal (Provencher et al. 2001c).

The perception that midstory competition drives under-

story decline has resulted in many managers burning

under relatively severe conditions (Varner et al. 2005).

High severity fires are needed to reduce the established

broadleaf midstory, especially in stands dominated by

larger stature individuals (Glitzenstein et al. 1995), but

high severity fires are risky in the contemporary

southern landscape, and can cause the unwanted death

of overstory longleaf trees (Varner et al. 2005, Williams

et al. 2006). If forest floor accumulation, as opposed to

competition by the midstory, were the dominant cause

of reduced understory vigor and diversity, then frequent,

low-intensity fires would suffice in the restoration of

understory communities without the inherent risks of

high severity fires. Furthermore, frequent fires may

eventually reduce midstory canopy density given suffi-

cient time.

The relationship among understory diversity and

forest structural elements resulting from low fire

frequency may be more complex than have been tested

to date across the range of edaphic conditions on which

longleaf pine communities occur. Using data collected

from northwestern Florida longleaf pine stands with a

range of fire histories, we used structural equation

modeling (SEM) to examine the relationships among

fire, hardwood cover, and forest floor development on

understory diversity. SEM allows the testing of both

indirect and direct effects among latent variables, which

are multivariate constructs of observed variables.

Because no single variable adequately captures complex

phenomena such as forest structure or understory vigor,

latent variables can be more powerful predictors because

they are derived from multiple diverse observations.

Furthermore, covariance among the predictor variables

that precludes traditional forms of regression analyses is

eliminated through the construction of the latent

variables. An additional power of SEM is its ability to

explicitly test causal models and assign effect sizes to the

various hypothetical direct and indirect relationships

(Malaeb et al. 2000). We report here tests of whether

midstory competition or the accumulation of litter and

forest floor development explained observed patterns of

understory biodiversity. The goal of this research is to

understand the structural features regulating biodiversi-

ty associated with managed fire regimes. Determining

the relative importance of putative causal mechanisms

driving understory diversity is important to prescribed

fire management, restoration strategies, and setting

desired future conditions.

METHODS

This study was conducted at Eglin Air Force Base

during 2002–2003. Eglin Air Force Base, the former

Choctawhatchee National Forest, is located on the

panhandle of Florida, USA, and serves as an important

reservoir for the longleaf pine ecosystem, containing

nearly 18 3 104 ha of longleaf pine and over half of the

remaining old growth (Varner et al. 2000, Holliday

2001). All study sites were within the Southern Pine Hills

District of the Coastal Plain Physiographic Province

with deep, well-drained sandy soils (Brown et al. 1990).

Soils of the study sites were all typic Quartzipsamments

of the Lakeland series with mean depth to water table

.200 cm (Overing et al. 1995). The climate of the area is

subtropical, with warm, humid summers and mild

winters. Mean annual temperatures in the area are

19.78C, with a mean annual precipitation of 1580 mm,

most of which falls from June to September (Overing et

al. 1995). Elevations of the study sites were 52–85 m

above sea level, and all sites had the minimal topogra-

phy typical of sandhills (Myers 1990). Vegetation was

dominated by a longleaf pine overstory with a midstory

of various deciduous oaks, e.g., Quercus laevis Walter,

Q. margaretta Ashe, Q. incana Bartram, Q. germinata

Small. Low fire frequency has led to the increase in

density and crown cover of deciduous oaks as well as the

expansion of Pinus clausa Vasey into the ecosystem and

an increased presence of evergreen oaks such as Q.

virginiana Miller (McCay 2000).
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Eglin Air Force Base established a long-term moni-

toring program in 2001 to determine the effects of

disturbance and management on plant communities. We

analyzed a subset of these data in the results reported

here. The monitoring is based on 1-ha plots (200 as of

2003) randomly located across the base. Within each

plot, overstory measurements were taken in a rectangle

(613106 m) running north to south (Fig. 1). Within this

area, the height and diameter of all trees .10 cm

diameter at 1.37 m (diameter at breast height, dbh) were

measured. Midstory measurements were taken in three

50 3 20 m subplots nested within the overstory

measurement plot (Fig. 1). Within these midstory plots,

all trees with a dbh ,10 cm were tallied by species and

diameter class.

Understory measurements were taken in four 10 3 10

m modules within the middle midstory subplot (Fig. 1).

Species richness (total number of species per 400 m2) was

tallied within the four modules. The density of grasses

and legumes was recorded in two 1-m2 plots per 103 10

m module. Consequently, eight subsamples were used to

calculate the understory density of each species. Other

understory response variables used in this study were:

(1) stem density for all species with the bunchgrass

growth form including some species within the genera

Andropogon, Schizachyrium, Aristida, Sporobolus, Sor-

ghastrum, and Panicum, (2) stem density for all non-

bunchgrass species in the genera Andropogon and

Schizacharium, and (3) stem density for all species in

the family Fabaceae. Members of each understory

category were chosen based on similarity of life history

traits. The more inclusive bunchgrass guild was chosen

because these species collectively allow for frequent fire.

Bunchgrasses are an important component of the fuel

bed because they burn readily, perch fallen pine needles

on grass litter, and quickly resprout following fire. For

all analyses, the understory response variables were

cube-root transformed to linearize the relationships and

equalize the residuals. Along a 100-m point-intercept

transect across the top and bottom of the middle

midstory subplot, the depth of leaf litter (Oi horizon)

was measured every 10 m and averaged for each plot

(Fig. 1). Litter constituted surface materials that

retained their original form (Oi horizon). Duff (Oe and

Oa horizon) constituted organic materials beneath the

litter layer that were fermented and decomposed. Duff

accumulation can be highly variable across space, but

builds more rapidly in the absence of fire around the

base of canopy longleaf pine. Thus, to gain a more

sensitive measure of forest floor development under

inadequate fire regime, duff was measured to the nearest

0.1 cm at the base of each canopy longleaf within the

overstory sampling areas (Fig. 1). All duff data were

averaged across trees to generate one value per plot, thus

making the measurement of duff accumulation an index

of forest floor development at the plot scale. Fire

frequency over the last 30 years was determined from

historical records. Appendix A contains a complete

description of variables, abbreviations, and their units

used in this study.

During June–September 2003, hemispherical photo-

graphs were taken at the center of the hexagon with a

Nikon CoolPix 990 digital camera with a fisheye lens

adaptor at a height of ;1 m in a subset of 69 plots.

Photos were taken when the sun was behind clouds or

below the horizon, i.e., dusk or dawn, to standardize

image quality and prevent errors due to reflections.

Photos were analyzed using WinSCANOPY Version

2004 (Regent Instruments, Quebec City, Canada) to

determine the percentage openness of the canopy, i.e.,

the amount of sky unobstructed by vegetation. The

estimate of openness provided by WinSCANOPY takes

into account the relative spherical area occupied in

elevation rings. Before calculating openness, each photo

was adjusted to allow for the greatest contrast between

the canopy and the sky. Canopy openness derived from

hemispherical photographs provides an accurate and

unbiased estimate of within growing-season light avail-

ability in these pine-woodland systems (Battaglia et al.

2003). When compared in a subset of 16 plots, the

estimates of canopy openness from the hemispherical

photographs were highly correlated with direct ceptom-

eter measurements of photosynthetically active radiation

transmitted to the forest floor (r2 ¼ 0.85).

Statistical analysis

We used the software AMOS version 5.0.1 (Small

Waters, Chicago, Illinois, USA) to perform SEM on the

relationships among the direct and indirect effects of

fire, canopy cover, and forest floor on understory plant

FIG. 1. Schematic of vegetation sampling plots. Overstory
variables were measured in the 61 3 106 m plot nested within
the 1-ha monitoring area. Midstory stems were sampled in the
three 103 50 m subplots. Understory was measured in the four
10 3 10 m squares marked with an X. Duff and litter were
measured along the dashed lines above and below the middle
midstory subplot. Species richness was calculated in the four 10
3 10 m modules marked with an X (400 m2). Density of
different species and guilds was determined from eight 1-m
subplots within each of the species richness modules.
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diversity. Fig. 2 shows both the structure and the results
of the model we tested. The construction of the SEM

was based on our conceptual model of the direct and
indirect effects of midstory cover and forest floor on

indicators of understory vigor. The model included
seven observed, three composite, and three latent
variables (Fig. 2). The dependent latent variable, vigor,

was derived from the observed variables of understory
species richness, legume density, bluestem density, and

bunchgrass density as described previously. The inde-
pendent latent variable, cover, was derived from canopy

openness and two composite variables, each being the
respective sums of oak basal area in the overstory and

midstory. The latent variable, forest floor, was derived
from a composite variable that consisted of the sum of

the litter and duff layer depths at the plot scale. We
chose to create the composite variables because they

represented stand characteristics we specifically wanted

to test and simplified the model (see Harrison et al.
2006).

Following the SEM analysis, we performed boundary
line regressions (Webb 1972, Schmidt et al. 2000) with

elements of understory diversity as dependent variables
and using duff depth as the predictor. Duff was chosen

as the predictor because it explained more variation than
canopy cover in all the understory responses, but these
data were collected at the stand scale, and thus duff

serves as an index of forest floor development. For each
understory response, the data from the 69 plots were

arranged in order from least to greatest duff depth. The
data were then broken into groups of seven pairs with

the last group having only six pairs. For each group, the
pair with the highest value for the response variable was

selected, giving a total of 10 pairs. A curve was then fit
to these pairs of data to represent the maximum

expected understory response for a given duff depth.

FIG. 2. Path diagram of the structural equation modeling (SEM). The shapes and arrows in the diagram indicate the type of
variable and their relationships; rectangles show indicator variables or direct observations, hexagons are composite variables
created by combining the direct observations indicated by the dotted arrows, and ellipses are latent variables. Solid arrows
represent both putative causal relationships among latent variables and their relationship with observed variables, with the arrow
thickness determined by the strength of the correlation. The values next to the solid arrows among the core of the model are
standardized regression coefficients. All correlations were significant at a¼ 0.05 with the exception of the direct effect of cover on
diversity. Variable descriptions are found in Appendix A, and detailed SEM results are in Appendix B.
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RESULTS

Stand characteristics

As expected with a history of variable fire frequency,

the xeric longleaf pine sandhills in this study represented

a full range of site conditions, especially with respect to

midstory encroachment. Midstory characteristics in this

study averaged 1016 hardwood stems/ha, ranging from

0 to 5019 stems/ha. Midstory hardwood basal area (BA)

averaged 6.14 m2/ha, ranging from 0 to 29.93 m2/ha.

Canopy hardwoods contributed additional BA ranging

from 0 to 17.75 m2/ha, averaging 4.05 m2/ha across all

plots. Together across all strata, total hardwood BA

ranged from 0 to 38.01 m2/ha, averaging 10.08 BA

m2/ha. Analysis of hemispherical photographs showed

that total openness ranged from 9.9% to 81.6%, with a

mean of 42.9% openness across all plots.

Understory species richness also varied considerably

among plots, ranging from 26 to 106 species/400 m2,

with an average of 61 species/400 m2 across all plots.

Forest floor accumulation ranged from 0.19 to 14.83 cm,

averaging 4.68 cm/plot. A detailed table of forest stand

and dependent variable summary statistics can be found

in Appendix B.

Structural equation model

The SEM developed for this study fit the data well as

determined by a suite of goodness-of-fit indices recom-

mended by Kline (1998) and Hu and Bentler (1999).

These and the complete results of the analysis can be

found in Appendix C. For the general model, all the

standardized regression coefficients were significant (P

, 0.05) for all relationships except the direct effect of

cover on vigor. The magnitudes of the direct and

indirect relationships among the latent variables are

shown in Fig. 2. All relationships among observed and

composite variables and their corresponding latent

variables were significant. Cover was positively corre-

lated with the observed variables midstory and overstory

oak basal area but was negatively correlated with

openness. Vigor was positively correlated with all

associated observed variables. Forest floor was positive-

ly correlated with the composite variable O horizon. The

latent variables, cover and forest floor, were positively

correlated with each other and negatively correlated to

number of burns. Vigor was, however, not directly

correlated to cover, but was directly negatively corre-

lated with forest floor. Detailed tables of regression

coefficients and squared multiple correlations can be

found in Appendix C.

The results of the SEM analysis indicate that midstory

encroachment represented as cover has no direct

influence on understory characteristics tested in this

model (Fig. 2). While cover had no significant direct

effect on vigor, the accumulation of the forest floor was

significantly and positively correlated with cover,

indicating an indirect negative effect of midstory cover

on understory vigor mediated through forest floor

development. The model confirmed that frequent fires

decreased both cover and forest floor.

Boundary line analysis

The boundary line analyses (Fig. 3) were all significant

at a ¼ 0.05 and indicated a negative linear relationship

(r2 ¼ 0.34) between duff depth (d) and species richness

represented by the following equation: species richness¼
4.52 3 d þ 87.3. The analysis also showed negative

curvilinear relationships among d and measures of

understory density as shown by the following equations:

bluestem¼19.013 e(�2.05d), bunchgrass¼37.93 e(�0.63d),

legumes¼ 22.93 e(�0.32d), and Schizycharyum¼�3.92 3

lnd þ 9.94. The variances explained by the equations

were 0.64, 0.66, 0.66, and 0.90 for bluestem, Schizachy-

rium, legume, and bunchgrass density, respectively.

Because measurement of duff accumulation in this study

is at the plot scale, it represents an index of forest floor

development. The curvilinear relationship between

understory density and duff depth demonstrates a high

sensitivity of understory plants to small amounts of

forest floor development and subtle changes in fuel bed

characteristics. For instance, within a stand that

averages a duff depth of 2 cm (maximum depth 8.8

cm) at the base of longleaf pine trees, there is a potential

maximum decline of 60%, 75%, 45%, and 70% in

bluestem, Schizachyrium, legume, and bunchgrass den-

sity, respectively, within the plots. The densities of all

species within the plots approached zero at ;5–6 cm of

duff at the base of trees within the stand. In contrast, the

maximum expected species richness decreased from ;90

to 50 species/400 m2 across the range of measured duff

depth.

DISCUSSION

The results of the structural equation model showed

forest floor development to be the likely causal

mechanism by which fire suppression and the presence

of midstory hardwoods affect species richness and

understory guilds in xeric longleaf sandhills. Light

attenuation by oaks was not seemingly a direct cause

of degradation on understory vigor, rather oak effects

were mediated through the contribution of litter to

forest floor development. It appears that in this study,

hardwoods light interception did not exceed thresholds

of light attenuation needed to suppress understory vigor

even at relatively high densities of sandhill hardwoods.

The relative openness of the plots in this study (42.9%

openness on average) falls within the range of values

reported by Battaglia et al. (2003) for second growth,

frequently burned longleaf pine woodlands.

While previous studies have established a link between

understory communities and light environment (e.g.,

Riegel et al. 1995, Hainds et al. 1999, Naumburg and

DeWald 1999) and litter accumulation (e.g., Sydes and

Grime 1981, Peterson and Facelli 1992, Facelli et al.

1999), very few have attempted to analyze these two

related factors together. A study examining the response
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of understory vegetation beneath closed canopy longleaf
pine plantations in South Carolina found that light

interception from dense canopies had a larger negative
effect on planted understory seedlings than pine litter

(Harrington and Edwards 1999, Harrington et al. 2003).
While the results of Harrington et al. are informative

and offer insight into using containerized seedlings for
restoration, caution must be exercised when applying

their results to non-plantation settings or in xeric, open

stands that contain significant oak litter and naturally
occurring populations of understory plants.

An example of the inconspicuous nature of the effects
of forest floor on the understory plant community can

be found in a long-term study conducted to compare the
effects of fire and fire surrogates for removing midstory

oaks (Provencher et al. 2001a, b). While mechanical

felling, girdling, and herbicides dramatically decreased
midstory oak density when compared to spring burning,

only burning had a significant positive effect on

understory density and species richness. Those results
are similar to our finding that forest floor development

has a greater negative impact than direct competition for
light on understory communities in fire suppressed, xeric

sand hill ecosystems.
Litter has been reported to represent a physical

barrier to plant growth and impede community devel-

opment, and this mechanism may explain the negative
impact of the forest floor on understory communities in

longleaf ecosystems. In deciduous woodlands, the ability
of sprouting understory species to penetrate the litter

layer was related to morphology (Sydes and Grimes
1981). Species whose leaves grew vertically before

unfolding were moderately successful in penetrating
the litter layer while those that grow from a basal

meristem, such as grasses, were not able to penetrate the

litter. The longleaf pine ecosystem is dominated by
grasses and species that resprout after fire from a basal

meristem. Historically, frequent fires consumed most

FIG. 3. Boundary-line analysis between response variables and duff depth. A solid line represents maximum expected response
to increasing duff depth based on curves fit to points surrounded by open squares.
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leaf litter; therefore, understory species vigor might be

particularly sensitive to litter accumulation.

In addition to litter acting as a physical barrier, the

forest floor might negatively influence understory plants

through phytotoxins, light interception, temperature

changes, or altered water status (Facelli and Pickett

1991). Litter leachates have been shown to inhibit

germination (Facelli and Pickett 1991); however, most

studies have been conducted in the laboratory and their

relevance to plant community dynamics is not yet

established. Nevertheless, oak litter is rich in tannins

and other chemical compounds that may influence

understory plants via altered nutrition, or allelopathy.

Litter also inhibits understory plants by producing

shade at the soil surface and some seeds need light to

break dormancy (Vazquez-Yanes et al. 1990). Likewise,

species with little energy stored in the seed need to

photosynthesize immediately upon germination to sur-

vive. If inadequate light is available, they will suffer

carbon stress, reducing vigor and possibly causing

mortality (Willms 1988). Most of the understory species

in the longleaf pine ecosystem we measured were

perennial and resprout after fire. Therefore, interference

of germination by the litter may not drive patterns of

degradation in the short term, but could inhibit recovery

of the system over longer periods of fire exclusion. More

importantly, shade at the surface alters the allocation of

carbon among leaves and roots within adult clonal

plants with fewer ramets being produced (Evans 1991,

1992).

The curvilinear boundary line response of understory

species showed a threshold sensitivity of the understory

to the development of an organic soil horizon within the

stand. Because our duff measurements were taken at the

base of trees within plots to increase the sensitivity of

our observations, these data represent an index of forest

floor development at the stand scale and likely integrate

subtle but important changes in the fuel bed that are

responsible for declines in biodiversity. Consequently,

burning xeric sites as frequently as fuels allow prevent-

ing forest floor development would be important for

maintaining high densities of understory species, regard-

less of midstory stem density. A long-term study that

examined community responses to annual, biennial, and

quadrennial fire return intervals in mesic longleaf pine

stands in South Carolina and northeast Florida found

that annual burning resulted in the highest cover and

richness of nonwoody understory plants (Glitzenstein et

al. 2003). We found a linear boundary line response of

species richness to duff depth at the stand scale. This

could indicate that while species densities quickly decline

with forest floor development, overall species richness

may be more resilient to periods of fire exclusion. This

was consistent with the patterns of recovery reported by

Provencher et al. (2001c), which showed a rapid

recovery of understory species after just one prescribed

burn.

Although our data showed that forest floor accumu-

lation and light environment were two of the dominant

mechanisms affecting most understory species respons-

es, the high variation in understory response for a given

duff depth in the boundary line analyses indicated that

other unexplored factors were also important. Some

factors may be related to environmental constraints we

did not measure such as soil texture, depth to water

table, or intensity of belowground competition. In

addition, much of the unaccounted variation across

the expansive study area could have been related to

variation in previous land use history, proximity to seed

sources, or other dispersal limitations. Examining the

responses of groups of species with similar life histories

helped eliminate many of these stochastic factors that

could have affected the presence or absence of individual

taxa.

It is important to note that while direct competition

and competitive exclusion by shading from the canopy

was not the primary force driving understory degrada-

tion on xeric longleaf pine sandhills, these results do not

suggest that midstory encroachment cannot achieve

canopy closure sufficient to eliminate groundcover

diversity elsewhere. Xeric sites represent an extreme

case; even with stem densities as high as 2000–3000

stems/ha, Provencher et al. (2001c) found canopy

closure values of no more than 60%. On more mesic

sites with greater leaf area and light interception, direct

competition through shading could be the primary

source of midstory decline as has been often reported

in the literature, though no previous studies included an

examination of the impact of forest floor (Platt et al.

1988a, b, Platt and Rathburn 1993, Brewer and Platt

1994, Brewer 1995). It is possible that rather than

representing one end of a gradient, xeric longleaf

sandhills might differ in kind rather than degree from

mesic longleaf pine communities with respect to the

influence of midstory encroachment on patterns of

degradation and restoration.

From a management perspective, fire frequency is the

most important factor related to understory species

density and diversity and has been reported elsewhere

(Brockway and Lewis 1997, Glitzenstein et al. 2003).

Consistent with Glitzenstein et al. (2003), our results

support their conclusion that to maintain a healthy

understory, fires should occur as frequently as fuels

allow. The shift in focus away from oak elimination

offers managers greater flexibility when applying pre-

scribed fire, due to the fact that fires capable of

eliminating midstory oak encroachment after decades

of insufficient fire often require burning under extreme

conditions or marginal prescription windows. More-

over, fuel build-up is often used to achieve greater fire

intensity by lengthening fire return intervals, which our

results indicate would exacerbate understory decline. In

addition to narrowing the prescription window for fire

management, such burns are more likely to escape or

cause extensive longleaf overstory mortality (Williams et
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al. 2006), particularly when duff is present (Varner et al.

2000, 2005). If maximizing understory diversity is a

manager’s goal, our results suggest that the link between
forest floor development and biodiversity should be of

primary concern. Managers should refine their applica-

tion of fire and fire surrogates to focus on forest floor
reduction rather than opening the midstory canopy in

xeric longleaf stands.
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031-A1).

APPENDIX B

A table of summary statistics of forest structure and understory variables measured (Ecological Archives A017-031-A2).

APPENDIX C

Tables of detailed results of the structural equation model including fit statistics and tables of regression coefficients and squared
multiple correlations for variables included in the model (Ecological Archives A017-031-A3).
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